Small ubiquitin-like modifier (SUMO) conjugation, or sumoylation, is a post-translational modification of various proteins similar to ubiquination, and has been noted in stress conditions including anoxia, hypothermia, and hypoxia. Changes in sumolyation patterns have been reported after brain ischemia, where it is thought to be possibly protective. To this end, the authors here attempt to further elucidate a possible mechanism underlying the role of sumoylation of the transmembrane protein NCX3, which is thought to be an effector of neuroprotection in ischemic mouse models.
- First, that SUMO1 conjugation does increase at various times points following induced ischemia via transient middle cerebral artery occlusion (tMCAO) (at 5 and 24 hours), after preconditioning (at 3, 5, 24, and 72 hours) and when preconditioning was combined with tMCAO (at 5 hours).
- Second, using immunohistochemical stains, the authors identified NCX and SUMO1 colocalization to the neuronal cell bodies in the primary cortical neurons, with a probable sumoylation site in the NCX f-loop of the antiporter.
- Third, in SUMO1 knockdown mouse models, NCX3 expression decreased 72 hours after tMCAO and after preconditioning + tMCAO and displayed a significant increase in ischemic volume after tMCAO at 24 and 72 hours after tMCAO induction.
Identifying targets for neuroprotection seems to be the next frontier in the world of stroke research. This takes us one step closer to characterizing the mechanisms underlying the possible neuroprotectant effect of ischemic preconditioning, whereby targeting either sumoylation of NCX, or regulation of NCX itself, may lead to the development of better neuroprotectants.